Detection and analysis of Staphylococcus aureus isolates found in ambulances in the Chicago metropolitan area


      Given the frequency with which many different strains of Staphylococcus aureus are found in various prehospital settings, this study sought to characterize S aureus isolates taken from one such environment. The objectives were to determine the frequency of S aureus in front-line, advanced life support (ALS) ambulances throughout the Chicago metropolitan area, and to generate antibiograms (antibiotic resistance profiles) for each S aureus isolate using 8 clinically relevant antibiotics.


      Samples were obtained from 26 sites in 71 ambulances from 34 different Chicago-area municipalities. Selected colonies that demonstrated a growth pattern consistent with that of S aureus were subjected to a latex agglutination test specific for S aureus. Antibiograms and genetic analyses were performed on all latex agglutination test–positive isolates.


      At least one S aureus isolate was found in approximately 69% of all ambulances in the study. Of all isolates detected, 77% showed resistance to at least one antibiotic, and 34% displayed resistance to 2 or more antibiotics. Some level of oxacillin resistance was found in 21% of isolates; however, only slightly more than half of these oxacillin-resistant isolates were found to carry the methicillin-resistant S aureus–specific SCCmec cassette. Some 12% of all isolates were ultimately determined to be methicillin-resistant S aureus, whereas the remaining 88% were methicillin-sensitive S aureus with varying antibiograms.


      Antibiotic resistance appears to be prevalent in S aureus isolates detected in Chicago area ALS ambulances. Given the ease with which S aureus can survive on inanimate surfaces and exchange antibiotic resistance elements, a conscientious approach to the application of existing cleaning techniques, especially in key ambulance sites, is needed. Future work will include further characterizing isolates using multiple techniques, as well as follow-up studies with interested municipalities.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Infection Control
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Archer G.L.
        Staphylococcus aureus: a well-armed pathogen.
        Clin Infect Dis. 1998; 26: 1179-1181
        • Chambers H.F.
        The changing epidemiology of Staphylococcus aureus.
        Emerg Infect Dis. 2001; 7: 178-182
        • Emori T.G.
        • Gaines R.P.
        An overview of nosocomial infections, including the role of the microbiology laboratory.
        Clin Microbiol Rev. 1993; 6: 428-442
        • Annane D.
        Septic shock.
        Lancet. 2005; 365: 63-78
        • Cosgrove S.E.
        • Carmelli Y.
        The impact of antimicrobial resistance on health and economic outcomes.
        Clin Infect Dis. 2003; 36: 1433-1437
        • Friedkin S.K.
        Increasing prevalence of antimicrobial resistance in intensive care units.
        Crit Care Med. 2001; 29: 64-68
        • Barber M.
        Methicillin-resistant staphylococci.
        J Clin Pathol. 1961; 14: 385-393
        • Enright M.C.
        • Robinson D.A.
        • Randle G.
        • Feil E.J.
        • Grundmann H.
        • Spratt B.G.
        The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).
        Proc Natl Aced Sci USA. 2002; 99: 7687-7692
        • Klein E.
        • Smith D.L.
        • Laxminarayan R.
        Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005.
        Emerg Infect Dis. 2007; 13: 1840-1846
        • Farr B.M.
        Prevention and control of methicillin-resistant Staphylococcus aureus infections.
        Curr Opin Infect Dis. 2004; 17: 317-322
        • Kopp B.J.
        • Nix D.E.
        • Armstrong E.P.
        Clinical and economic analysis of methicillin-susceptible and -resistant Staphylococcus aureus infections.
        Ann Pharmacother. 2004; 38: 1377-1382
        • Centers for Disease Control and Prevention
        Vancomycin-resistant Staphylococcus aureus.
        Morb Mortal Wkly Rep. 2004; 53: 322-323
        • Friedkin S.K.
        Vancomycin-intermediate and -resistant Staphylococcus aureus: what the infectious disease specialist needs to know.
        Clin Infect Dis. 2001; 32: 108-115
        • Isao H.
        • Nomura S.
        • Nagayama A.
        The effect of vancomycin and β-lactam antibiotics on vancomycin-resistant Staphylococcus aureus.
        N Engl J Med. 1999; 341 ([correspondence]): 1624
        • Waldvogel F.A.
        New resistance in Staphylococcus aureus.
        N Engl J Med. 1999; 340 ([editorial]): 556-557
        • Monnet D.
        Methicillin-resistant Staphylococcus aureus and its relationship to antimicrobial use: Possible implications for control.
        Infect Control Hosp Epidemiol. 1998; 19: 552-559
        • Davis K.A.
        • Stewart J.J.
        • Crouch H.K.
        • Florez C.E.
        • Hospenthal D.R.
        Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent effect on MRSA infection.
        Clin Infect Dis. 2004; 39: 776-782
        • Herold B.C.
        • Immergluck L.C.
        • Maranan M.C.
        • Lauderdale D.S.
        • Gaskin R.E.
        • Boyle-Vavra S.
        • et al.
        Community-acquired methicillin resistant Staphylococcus aureus in children with no identified predisposing risk.
        JAMA. 1998; 279: 593-598
        • Klevens R.M.
        • Morrison M.A.
        • Nadle J.
        • Petit S.
        • Gershman K.
        • Ray S.
        • Harrison L.H.
        • et al.
        Invasive methicillin-resistant Staphylococcus aureus infections in the United States.
        JAMA. 2007; 298: 1763-1771
        • Maree C.L.
        • Daum R.S.
        • Boyle-Vavra S.
        • Matayoshi K.
        • Miller L.G.
        Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections.
        Emerg Infect Dis. 2007; 13: 236-242
        • Wylie J.L.
        • Nowicki D.L.
        Molecular epidemiology of community- and health care–associated methicillin-resistant Staphylococcus aureus in Manitoba, Canada.
        J Clin Microbiol. 2005; 43: 2830-2836
        • Tsuji B.T.
        • Rybak M.J.
        • Cheung C.M.
        • Amjad M.
        • Kaatz G.W.
        Community- and health care–associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents.
        Diagn Microbiol Infect Dis. 2007; 58: 41-47
        • Ubukata K.
        • Nakagami S.
        • Nitta A.
        • Yamane A.
        • Kawakami S.
        • Sugiura M.
        • et al.
        Rapid detection of the mecA gene in methicillin-resistant staphylococci by enzymatic detection of polymerase chain reaction products.
        J Clin Microbiol. 1992; 30: 1728-1733
        • Lim D.
        • Strynadka N.C.
        Structural basic for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.
        Nat Struct Biol. 2002; 9: 870-876
        • Vandenesch F.
        • Naimi T.
        • Enright M.C.
        • Lina G.
        • Nimmo G.R.
        • Heffernan H.
        • et al.
        Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence.
        Emerg Infect Dis. 2003; 9: 978-984
        • Boyle-Vavra S.
        • Daum R.S.
        Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin.
        Lab Invest. 2007; 87: 3-9
        • Clinical Laboratory Standards Institute
        Performance standards for antimicrobial susceptibility testing, nineteenth information supplement. CLSI document M100-S19.
        Clinical Laboratory Standards Institute, Wayne [PA]2009
        • Hanssen A.
        • Ericson J.U.
        SCCmec in staphylococci: genes on the move.
        FEMS Immunol Med Microbiol. 2005; 46: 8-20
        • Nadarajah J.
        • Lee M.J.S.
        • Louie L.
        • Jacob L.
        • Simor A.E.
        • Louie M.
        • et al.
        Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates.
        J Med Microbiol. 2006; 55: 1675-1683
        • Kernodle D.S.
        • Classen D.
        • Stratton C.
        • Kaiser A.
        Association of borderline oxacillin-susceptible strains of Staphylococcus aureus with surgical wound infections.
        J Clin Microbiol. 1998; 36: 219-222
        • Balslev U.
        • Bremmelgaard A.
        • Svejgaard E.
        • Havstreym J.
        • Westh H.
        An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit.
        Microb Drug Resist. 2005; 11: 78-81
        • Highlander S.K.
        • Hultén K.G.
        • Qin X.
        • Jiang H.
        • Yerrapragada S.
        • Mason Jr., E.O.
        • et al.
        Subtle genetic changes enhance virulence of methicillin-resistant and -sensitive Staphylococcus aureus.
        BMC Microbiol. 2007; 7: 99
        • Archer G.L.
        • Climo M.W.
        Antimicrobial susceptibility of coagulase-negative staphylococci.
        Antimicrob Agents Chemother. 1994; 38: 2231-2237
        • Gribaldo S.
        • Cookson B.
        • Saunders N.
        • Marples R.
        • Stanley J.
        Rapid identification by specific PCR of coagulase-negative staphylococcal species important in hospital infection.
        J Med Microbiol. 2001; 46: 45-53
        • Schaberg D.R.
        • Culver D.H.
        • Gaines R.P.
        Major trends in the microbial etiology of the nosocomial infection.
        Am J Med. 1991; 91: 725-735
        • Fernandes C.J.
        • Fernandes L.A.
        • Collignon P.
        • on behalf of the Australian Group on Antimicrobial Resistance
        Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus.
        J Antimicrob Chemother. 2005; 55: 506-510
        • Smyth R.W.
        • Kahlmeter G.
        Mannitol salt agar-cefoxitin combination as a screening medium for methicillin-resistant Staphylococcus aureus.
        J Clin Microbiol. 2005; 43: 3797-3799
        • Swenson J.M.
        • Tenover F.C.
        • Cefoxitin Disk Study Group
        Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp.
        J Clin Microbiol. 2005; 43: 3818-3823
        • Trzcinski K.
        • Cooper B.
        • Hryniewicz W.
        • Dowson C.
        Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus.
        J Antimicrob Chemother. 2000; 45: 763-770
        • Roline C.E.
        • Crumpecker C.
        • Dunn T.M.
        Can methicillin-resistant Staphylococcus aureus be found in an ambulance fleet?.
        Prehosp Emerg Care. 2007; 11: 241-244
        • Brown R.
        • Minnon J.
        • Schneider S.
        • Vaughn J.
        Prevalence of methicillin-resistant Staphylococcus aureus in ambulances in southern Maine.
        Prehosp Emerg Care. 2010; 14: 176-181