Advertisement

Detection and termination of an extended low-frequency hospital outbreak of GIM-1–producing Pseudomonas aeruginosa ST111 in Germany

Published:April 10, 2015DOI:https://doi.org/10.1016/j.ajic.2015.02.024

      Highlights

      • We provide insight into a long-term, discontinuous outbreak of metallo-β-lactamase Pseudomonas aeruginosa.
      • Molecular and conventional environmental sampling revealed the source of infection.
      • Strict infection control measures achieved clinical infection control.

      Background

      Metallo-β-lactamase German imipenemase-1 (GIM-1)–mediated carbapenem resistance is emerging in Germany but has not spread beyond a very localized region. The aim of this study was to describe the first outbreak of an extensively drug-resistant GIM-1–carrying Pseudomonas aeruginosa strain affecting 29 patients in a tertiary care hospital from 2002-2013.

      Methods

      The outbreak was studied retrospectively and prospectively by a combination of molecular methods (carbapenemase polymerase chain reaction [PCR]), genotyping (DiversiLab, pulsed field gel electrophoresis and multi-locus sequence typing, bioMérieux, Marcy l'Etoile, France), descriptive epidemiology, and extensive environmental investigations using swabs with liquid transport medium, blaGIM-1 PCR, directly from the medium and culture.

      Results

      Of the 29 affected patients, 24 had been admitted to a surgical intensive care unit at some point, where environmental sampling revealed a high burden of blaGIM-1 in the wastewater system. The outbreak strain was found in several sinks and on a reusable hair washbasin. Initially, general infection control measures were applied; thereafter, specific measures were implemented, including the restriction of washbasin use. Continued surveillance over a period of 2 years has revealed no further case of GIM-1–carrying Pseudomonas aeruginosa.

      Conclusion

      This long-term outbreak highlights the potential of molecular methods in surveillance for multidrug-resistant pathogens and in environmental sampling and the successful containment by application of specific control measures targeting biofilms within sink drains as potential environmental reservoirs for P aeruginosa.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Infection Control
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Trautmann M.
        • Lepper P.M.
        • Haller M.
        Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism.
        Am J Infect Control. 2005; 33: S41-S49
        • Magiorakos A.P.
        • Srinivasan A.
        • Carey R.B.
        • Carmeli Y.
        • Falagas M.E.
        • Giske C.G.
        • et al.
        Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.
        Clin Microbiol Infect. 2012; 18: 268-281
        • Castanheira M.
        • Toleman M.A.
        • Jones R.N.
        • Schmidt F.J.
        • Walsh T.R.
        Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase.
        Antimicrobial Agents Chemother. 2004; 48: 4654-4661
        • Hamprecht A.
        • Poirel L.
        • Gottig S.
        • Seifert H.
        • Kaase M.
        • Nordmann P.
        Detection of the carbapenemase GIM-1 in Enterobacter cloacae in Germany.
        J Antimicrob Chemother. 2013; 68: 558-561
        • Kaase M.
        • Szabados F.
        • Pfennigwerth N.
        • Anders A.
        • Geis G.
        • Pranada A.B.
        • et al.
        Description of the metallo-beta-lactamase GIM-1 in Acinetobacter pittii.
        J Antimicrob Chemother. 2014; 69: 81-84
        • Rieber H.
        • Frontzek A.
        • Pfeifer Y.
        Emergence of metallo-beta-lactamase GIM-1 in a clinical isolate of Serratia marcescens.
        Antimicrobial Agents Chemother. 2012; 56: 4945-4947
        • Rieber H.
        • Frontzek A.
        • von Baum H.
        • Pfeifer Y.
        Emergence of metallo-beta-lactamases GIM-1 and VIM in multidrug-resistant Pseudomonas aeruginosa in North Rhine-Westphalia, Germany.
        J Antimicrob Chemother. 2012; 67: 1043-1045
        • Wendel A.F.
        • Brodner A.H.
        • Wydra S.
        • Ressina S.
        • Henrich B.
        • Pfeffer K.
        • et al.
        Genetic characterization and emergence of the metallo-beta-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak.
        Antimicrobial Agents Chemother. 2013; 57: 5162-5165
        • Canton R.
        • Akova M.
        • Carmeli Y.
        • Giske C.G.
        • Glupczynski Y.
        • Gniadkowski M.
        • et al.
        Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe.
        Clin Microbiol Infect. 2012; 18: 413-431
        • Elias J.
        • Schoen C.
        • Heinze G.
        • Valenza G.
        • Gerharz E.
        • Gerharz H.
        • et al.
        Nosocomial outbreak of VIM-2 metallo-beta-lactamase-producing Pseudomonas aeruginosa associated with retrograde urography.
        Clin Microbiol Infect. 2010; 16: 1494-1500
        • Willmann M.
        • Bezdan D.
        • Zapata L.
        • Susak H.
        • Vogel W.
        • Schroppel K.
        • et al.
        Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study.
        J Antimicrob Chemother. 2015; 70: 1322-1330
        • Horan T.C.
        • Andrus M.
        • Dudeck M.A.
        CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting.
        Am J Infect Control. 2008; 36: 309-332
        • Pitout J.D.
        • Gregson D.B.
        • Poirel L.
        • McClure J.A.
        • Le P.
        • Church D.L.
        Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory.
        J Clin Microbiol. 2005; 43: 3129-3135
        • Qu T.T.
        • Zhang J.L.
        • Wang J.
        • Tao J.
        • Yu Y.S.
        • Chen Y.G.
        • et al.
        Evaluation of phenotypic tests for detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains in China.
        J Clin Microbiol. 2009; 47: 1136-1142
        • Swayne R.L.
        • Ludlam H.A.
        • Shet V.G.
        • Woodford N.
        • Curran M.D.
        Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae.
        Int J Antimicrob Agents. 2011; 38: 35-38
        • Tenover F.C.
        • Arbeit R.D.
        • Goering R.V.
        • Mickelsen P.A.
        • Murray B.E.
        • Persing D.H.
        • et al.
        Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing.
        J Clin Microbiol. 1995; 33: 2233-2239
        • Curran B.
        • Jonas D.
        • Grundmann H.
        • Pitt T.
        • Dowson C.G.
        Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa.
        J Clin Microbiol. 2004; 42: 5644-5649
        • van Mansfeld R.
        • Willems R.
        • Brimicombe R.
        • Heijerman H.
        • van Berkhout F.T.
        • Wolfs T.
        • et al.
        Pseudomonas aeruginosa genotype prevalence in Dutch cystic fibrosis patients and age dependency of colonization by various P. aeruginosa sequence types.
        J Clin Microbiol. 2009; 47: 4096-4101
        • Siegel J.D.
        • Rhinehart E.
        • Jackson M.
        • Chiarello L.
        • and the Healthcare Infection Control Practices Advisory Committee
        Guidelines for isolation precautions: preventing transmission of infectious agents in healthcare settings.
        CDC, 2007
        • Cabot G.
        • Ocampo-Sosa A.A.
        • Dominguez M.A.
        • Gago J.F.
        • Juan C.
        • Tubau F.
        • et al.
        Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones.
        Antimicrobial Agents Chemother. 2012; 56: 6349-6357
        • Akova M.
        • Daikos G.L.
        • Tzouvelekis L.
        • Carmeli Y.
        Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria.
        Clin Microbiol Infect. 2012; 18: 439-448
        • Zavascki A.P.
        • Barth A.L.
        • Gaspareto P.B.
        • Goncalves A.L.
        • Moro A.L.
        • Fernandes J.F.
        • et al.
        Risk factors for nosocomial infections due to Pseudomonas aeruginosa producing metallo-beta-lactamase in two tertiary-care teaching hospitals.
        J Antimicrob Chemother. 2006; 58: 882-885
        • Lemmen S.W.
        • Hafner H.
        • Zolldann D.
        • Stanzel S.
        • Lutticken R.
        Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.
        J Hosp Infect. 2004; 56: 191-197
        • Lerner A.
        • Adler A.
        • Abu-Hanna J.
        • Meitus I.
        • Navon-Venezia S.
        • Carmeli Y.
        Environmental contamination by carbapenem-resistant Enterobacteriaceae.
        J Clin Microbiol. 2013; 51: 177-181
        • Corvec S.
        • Poirel L.
        • Espaze E.
        • Giraudeau C.
        • Drugeon H.
        • Nordmann P.
        Long-term evolution of a nosocomial outbreak of Pseudomonas aeruginosa producing VIM-2 metallo-enzyme.
        J Hosp Infect. 2008; 68: 73-82
        • Crespo M.P.
        • Woodford N.
        • Sinclair A.
        • Kaufmann M.E.
        • Turton J.
        • Glover J.
        • et al.
        Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia.
        J Clin Microbiol. 2004; 42: 5094-5101
        • Kramer A.
        • Schwebke I.
        • Kampf G.
        How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.
        BMC Infect Dis. 2006; 6: 130
        • Hota S.
        • Hirji Z.
        • Stockton K.
        • Lemieux C.
        • Dedier H.
        • Wolfaardt G.
        • et al.
        Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design.
        Infect Control Hosp Epidemiol. 2009; 30: 25-33
        • Lowe C.
        • Willey B.
        • O'Shaughnessy A.
        • Lee W.
        • Lum M.
        • Pike K.
        • et al.
        Outbreak of extended-spectrum beta-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks(1).
        Emerg Infect Dis. 2012; 18: 1242-1247
        • Molin S.
        • Tolker-Nielsen T.
        Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure.
        Curr Opin Biotechnol. 2003; 14: 255-261
        • Araoka H.
        • Kimura M.
        • Abe M.
        • Takahashi N.
        • Yoneyama A.
        Appropriate sampling sites for the surveillance of multidrug-resistant Pseudomonas aeruginosa colonization.
        Jpn J Infect Dis. 2014; 67: 118-119
        • Paterson D.L.
        The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species.
        Clin Infect Dis. 2006; 43: S43-S48