Research Article| Volume 34, ISSUE 5, SUPPLEMENT , S3-S10, June 2006

Download started.


Mechanisms of antimicrobial resistance in bacteria

  • Fred C. Tenover
    Reprint requests: Fred C. Tenover, PhD, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333.
    From the Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA
    Search for articles by this author
      The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, β-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to ≥1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories—one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa—are reviewed to illustrate the varied ways in which resistant bacteria develop.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Infection Control
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Krause R.M.
        The origin of plagues: old and new.
        Science. 1992; 257: 1073-1078
      1. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004.
        Am J Infect Control. 2004; 32: 470-485
        • Chambers H.F.
        The changing epidemiology of Staphylococcus aureus?.
        Emerg Infect Dis. 2001; 7: 178-182
        • Edmond M.B.
        • Wallace S.E.
        • McClish D.K.
        • Pfaller M.A.
        • Jones R.N.
        • Wenzel R.P.
        Nosocomial bloodstream infections in United States hospitals: a 3-year analysis.
        Clin Infect Dis. 1999; 29: 239-244
        • Jones R.N.
        • Kirby J.T.
        • Beach M.L.
        • Biedenbach D.J.
        • Pfaller M.A.
        Geographic variations in activity of broad-spectrum beta-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997–2000).
        Diagn Microbiol Infect Dis. 2002; 43: 239-243
        • Karlowsky J.A.
        • Draghi D.C.
        • Jones M.E.
        • Thornsberry C.
        • Friedland I.R.
        • Sahm D.F.
        Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001.
        Antimicrob Agents Chemother. 2003; 47: 1681-1688
        • Martone W.J.
        Spread of vancomycin-resistant enterococci: why did it happen in the United States?.
        Infect Control Hosp Epidemiol. 1998; 19: 539-545
        • Kang C.I.
        • Kim S.H.
        • Park W.B.
        • et al.
        Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome.
        Antimicrob Agents Chemother. 2005; 49: 760-766
        • Ibrahim E.H.
        • Sherman G.
        • Ward S.
        • Fraser V.J.
        • Kollef M.H.
        The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting.
        Chest. 2000; 118: 146-155
        • Tenover F.C.
        • Weigel L.M.
        • Appelbaum P.C.
        • et al.
        Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania.
        Antimicrob Agents Chemother. 2004; 48: 275-280
        • Stevenson K.B.
        Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in rural communities, Western United States.
        Emerg Infect Dis. 2005; 11: 895-903
        • Pitout J.D.
        • Hanson N.D.
        • Church D.L.
        • Laupland K.B.
        Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum beta-lactamases: importance of community isolates with blaCTX-M genes.
        Clin Infect Dis. 2004; 38: 1736-1741
        • Woodford N.
        • Ward M.E.
        • Kaufmann M.E.
        • et al.
        Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK.
        J Antimicrob Chemother. 2004; 54: 735-743
        • Francis J.S.
        • Doherty M.C.
        • Lopatin U.
        • et al.
        Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes.
        Clin Infect Dis. 2005; 40: 100-107
        • Herold B.C.
        • Immergluck L.C.
        • Maranan M.C.
        • et al.
        Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk.
        JAMA. 1998; 279: 593-598
        • McGowan Jr., J.E.
        Economic impact of antimicrobial resistance.
        Emerg Infect Dis. 2001; 7: 286-292
        • Neu H.C.
        The crisis in antibiotic resistance.
        Science. 1992; 257: 1064-1073
        • McManus M.C.
        Mechanisms of bacterial resistance to antimicrobial agents.
        Am J Health Syst Pharm. 1997; 54: 1420-1433
        • Drlica K.
        • Zhao X.
        DNA gyrase, topoisomerase IV, and the 4-quinolones.
        Microbiol Mol Biol Rev. 1997; 61: 377-392
        • Yao J.
        • Moellering R.J.
        Antibacterial agents.
        in: Murray P.R. Baron E.J. Jorgensen J.H. Pfaller M.A. Yolken R.H. Manual of clinical microbiology. 8th ed. ASM Press, Washington, DC2003: 1039-1073
        • Petri W.A.J.
        Antimicrobial agents: sulfonamides, trimethoprim-sulfamethoxazole, quinolones, and agents for urinary tract infections.
        in: Brunton L.L. Lazo J.S. Parker K.L. Goodman & Gilman's the pharmacological basis of therapeutics. 11th ed. McGraw-Hill, New York2006: 1111-1126
        • Storm D.R.
        • Rosenthal K.S.
        • Swanson P.E.
        Polymyxin and related peptide antibiotics.
        Annu Rev Biochem. 1977; 46: 723-763
        • Carpenter C.F.
        • Chambers H.F.
        Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens.
        Clin Infect Dis. 2004; 38: 994-1000
        • Landgren M.
        • Oden H.
        • Kuhn I.
        • Osterlund A.
        • Kahlmeter G.
        Diversity among 2481 Escherichia coli from women with community-acquired lower urinary tract infections in 17 countries.
        J Antimicrob Chemother. 2005; 55: 928-937
        • Karlowsky J.A.
        • Kelly L.J.
        • Thornsberry C.
        • Jones M.E.
        • Sahm D.F.
        Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States.
        Antimicrob Agents Chemother. 2002; 46: 2540-2545
        • Allen U.D.
        • MacDonald N.
        • Fuite L.
        • Chan F.
        • Stephens D.
        Risk factors for resistance to “first-line” antimicrobials among urinary tract isolates of Escherichia coli in children.
        CMAJ. 1999; 160: 1436-1440
        • Rupp M.E.
        • Fey P.D.
        Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment.
        Drugs. 2003; 63: 353-365
        • Bradford P.A.
        Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat.
        Clin Microbiol Rev. 2001; 14: 933-951
        • Paterson D.L.
        • Rossi F.
        • Baquero F.
        • et al.
        In vitro susceptibilities of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: the 2003 Study for Monitoring Antimicrobial Resistance Trends (SMART).
        J Antimicrob Chemother. 2005; 55: 965-973
        • Rasheed J.K.
        • Jay C.
        • Metchock B.
        • et al.
        Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia.
        Antimicrob Agents Chemother. 1997; 41: 647-653
        • Ananthan S.
        • Subha A.
        Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli.
        Indian J Med Microbiol. 2005; 23: 20-23
        • Clarke B.
        • Hiltz M.
        • Musgrave H.
        • Forward K.R.
        Cephamycin resistance in clinical isolates and laboratory-derived strains of Escherichia coli, Nova Scotia, Canada.
        Emerg Infect Dis. 2003; 9: 1254-1259
        • Oliver A.
        • Weigel L.M.
        • Rasheed J.K.
        • McGowan Jr., J.E.
        • Raney P.
        • Tenover F.C.
        Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli.
        Antimicrob Agents Chemother. 2002; 46: 3829-3836
        • Martinez-Martinez L.
        • Conejo M.C.
        • Pascual A.
        • et al.
        Activities of imipenem and cephalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal beta-lactamase and showing altered porin profiles.
        Antimicrob Agents Chemother. 2000; 44: 2534-2536
        • Harder K.J.
        • Nikaido H.
        • Matsuhashi M.
        Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin.
        Antimicrob Agents Chemother. 1981; 20: 549-552
        • Hiramatsu K.
        • Hanaki H.
        • Ino T.
        • Yabuta K.
        • Oguri T.
        • Tenover F.C.
        Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility.
        J Antimicrob Chemother. 1997; 40: 135-136
        • Fridkin S.K.
        Vancomycin-intermediate and -resistant Staphylococcus aureus: what the infectious disease specialist needs to know.
        Clin Infect Dis. 2001; 32: 108-115
        • Hanaki H.
        • Kuwahara-Arai K.
        • Boyle-Vavra S.
        • Daum R.S.
        • Labischinski H.
        • Hiramatsu K.
        Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50.
        J Antimicrob Chemother. 1998; 42: 199-209
        • Cui L.
        • Murakami H.
        • Kuwahara-Arai K.
        • Hanaki H.
        • Hiramatsu K.
        Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50.
        Antimicrob Agents Chemother. 2000; 44: 2276-2285
        • Noble W.C.
        • Virani Z.
        • Cree R.G.
        Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus.
        FEMS Microbiol Lett. 1992; 93: 195-198
        • Centers for Disease Control and Prevention (CDC)
        Staphylococcus aureus resistant to vancomycin—United States, 2002.
        MMWR Morb Mortal Wkly Rep. 2002; 51: 565-567
        • Chang S.
        • Sievert D.M.
        • Hageman J.C.
        • et al.
        Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene.
        N Engl J Med. 2003; 348: 1342-1347
        • Weigel L.M.
        • Clewell D.B.
        • Gill S.R.
        • et al.
        Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus.
        Science. 2003; 302: 1569-1571
        • Okuma K.
        • Iwakawa K.
        • Turnidge J.D.
        • et al.
        Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community.
        J Clin Microbiol. 2002; 40: 4289-4294
        • Severin A.
        • Tabei K.
        • Tenover F.
        • Chung M.
        • Clarke N.
        • Tomasz A.
        High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex.
        J Biol Chem. 2004; 279: 3398-3407
        • Perichon B.
        • Courvalin P.
        Heterologous expression of the enterococcal vanA operon in methicillin-resistant Staphylococcus aureus.
        Antimicrob Agents Chemother. 2004; 48: 4281-4285
        • Karlowsky J.A.
        • Jones M.E.
        • Thornsberry C.
        • Evangelista A.T.
        • Yee Y.C.
        • Sahm D.F.
        Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001-2003 Tracking Resistance in the United States Today Surveillance studies.
        Clin Infect Dis. 2005; 40: S89-S98
        • Schweizer H.P.
        Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions.
        Genet Mol Res. 2003; 2: 48-62
        • Poole K.
        • Srikumar R.
        Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms, and clinical significance.
        Curr Top Med Chem. 2001; 1: 59-71