Major article| Volume 41, ISSUE 12, P1182-1187, December 2013

Nosocomial urinary tract infections caused by Pseudomonas aeruginosa and Acinetobacter species: Sensitivity to antibiotics and risk factors


      Pseudomonas aeruginosa and Acinetobacter species frequently cause intrahospital urinary tract infections (IUTI), contributing to increased hospital morbidity and mortality. Our objective was further exploration of possible risk factors for development of IUTI caused by P aeruginosa and Acinetobacter spp, including their resistance to various antibiotics.


      The prospective case control study was conducted in Clinical Center Kragujevac, Serbia, during the period January 2009 to December 2011 and covered all patients with IUTI according to the Centers for Disease Control and Prevention criteria. The patients classified as “cases” had an IUTI caused by P aeruginosa or Acinetobacter spp. The control patients were matched to the cases and selected randomly from the remaining patients.


      There were 79 cases (11.9%) and 586 (88.1%) controls in the study. According to the multivariate binary logistic regression, there were 3 significant predictors of P aeruginosa and Acinetobacter spp IUTI: male sex (odds ratio [OR], 0.423; 95% confidence interval [CI]: 0.251-0.711; P = .001), stay in another hospital ward before emergence of IUTI (OR, 1.704; 95% CI: 1.013-2.864; P = .044), and previous use of penicillins and their combinations with inhibitors of β-lactamases (OR, 2.643; 95% CI: 1.044-6.692; P = .040).


      Knowing that IUTI caused by above-mentioned bacteria are especially frequent among male patients, after previous use of penicillins, and in patients who spent some time previously at other wards, sound strategies for prevention of such infections in clinical practice should be developed.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to American Journal of Infection Control
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Falagas M.E.
        • Rafailidis P.I.
        Attributable mortality of Acinetobacter baumannii: no longer a controversial issue.
        Crit Care. 2007; 11: 134-136
        • Gaynes R.
        • Edwards J.R.
        Overview of nosocomial infections caused by gram-negative bacilli.
        Clin Infect Dis. 2005; 41: 848-854
        • Deshpande L.M.
        • Fritsche T.R.
        • Jones R.N.
        Molecular epidemiology of selected multidrug-resistant bacteria: a global report from the SENTRY Antimicrobial Surveillance Program.
        Diagn Microbiol Infect Dis. 2004; 49: 231-236
        • Hidron A.I.
        • Edwards J.R.
        • Patel J.
        • Horan T.C.
        • Sievert D.M.
        • Pollock D.A.
        • et al.
        • National Healthcare Safety Network Team. The National Healthcare Safety Network Team and Participating National Healthcare Safety Network Facilities
        Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007.
        Infect Control Hosp Epidemiol. 2008; 29: 996-1011
        • Master R.N.
        • Clark R.B.
        • Karlowsky J.A.
        • Ramirez J.
        • Bordon J.M.
        Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009.
        Int J Antimicrob Agents. 2011; 38: 291-295
        • Paterson D.L.
        The epidemiological profile of infections with multidrug resistant Pseudomonas aeruginosa and Acinetobacter species.
        Clin Infect Dis. 2006; 43: 4-48
        • Mittal R.
        • Aggarwal S.
        • Sharma S.
        • Chhibber S.
        • Harjai K.
        Urinary tract infections caused by Pseudomonas aeruginosa: a minireview.
        J Infect Public Health. 2009; 2: 101-111
        • Tabibian J.H.
        • Gornbein J.
        • Heidari A.
        • Dien S.L.
        • Lau V.H.
        • Chahal P.
        • et al.
        Uropathogens and host characteristics.
        J Clin Microbiol. 2008; 46: 3980-3989
        • Fournier P.E.
        • Richet H.
        The epidemiology and control of Acinetobacter baumannii in health care facilities.
        Clin Infect Dis. 2006; 42: 692-699
        • Garner J.S.
        • Jarvis W.R.
        • Emori T.G.
        • Horan T.C.
        • Hughes J.M.
        CDC definitions for nosocomial infections.
        Am J Infect Control. 1988; 16: 128-140
        • Kiska D.L.
        • Gilligan P.H.
        Pseudomonas and Burkholderia.
        in: Murray P.R. Baron E.J. Pfaller M.A. Manual of clinical microbiology. American Society for Microbiology, Washington [DC]1995: 517-525
        • Clinical Laboratory Standard Institute
        Performance standards for antimicrobial susceptibility testing; Seventeenth informational supplement M100-S17.
        16th ed. Clinical Laboratory Standard Institute, Wayne [PA]2007
        • Falagas M.E.
        • Koletsi P.K.
        • Bliziotis I.A.
        The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa.
        J Med Microbiol. 2006; 55: 1615-1617
        • Livermore D.M.
        Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?.
        Clin Infect Dis. 2002; 34: 634-640
        • El Amari E.B.
        • Chamot E.
        • Auckenthaler R.
        • Pechere J.C.
        • Van Delden C.
        Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates.
        Clin Infect Dis. 2001; 33: 1859-1864
        • Dent L.L.
        • Marshall D.R.
        • Pratap S.
        • Hulette R.B.
        Multidrug-resistant Acinetobacter baumannii: a descriptive study in a city hospital.
        BMC Infect Dis. 2010; 10: 196
        • Van Looveren M.
        • Goossens H.
        Antimicrobial resistance of Acinetobacter spp in Europe.
        Clin Microbiol Infect. 2004; 10: 684-704
        • Lautenbach E.
        • Synnestvedt M.
        • Weiner M.G.
        • Bilker W.B.
        • Vo L.
        • Schein J.
        • et al.
        Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes.
        Infect Control Hosp Epidemiol. 2010; 31: 47-53
        • Turton J.F.
        • Kaufmann M.E.
        • Warner M.
        • Coelho J.
        • Dijkshoorn L.
        • van der Reijden T.
        • et al.
        A prevalent, multiresistant clone of Acinetobacter baumannii in Southeast England.
        J Hosp Infect. 2004; 58: 170-179
        • Aloush V.
        • Navon-Venezia S.
        • Seigman-Igra Y.
        • Cabili S.
        • Carmeli Y.
        Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact.
        Antimicrob Agents Chemother. 2006; 50: 43-48
        • Onguru P.
        • Erbay A.
        • Bodur H.
        • Baran G.
        • Akinci E.
        • Balaban N.
        • et al.
        Imipenem-resistant Pseudomonas aeruginosa: risk factors for nosocomial infections.
        J Korean Med Sci. 2008; 23: 982-987
        • Miliani K.
        • L’Hériteau F.
        • Lacavé L.
        • Carbonne A.
        • Astagneau P.
        • Antimicrobial Surveillance Network Study Group
        Imipenem and ciprofloxacin consumption as factors associated with high incidence rates of resistant Pseudomonas aeruginosa in hospitals in northern France.
        J Hosp Infect. 2011; 77: 343-347
        • Pakyz A.L.
        • Oinonen M.
        • Polk R.E.
        Relationship of carbapenem restriction in 22 university teaching hospitals to carbapenem use and carbapenem-resistant Pseudomonas aeruginosa.
        Antimicrob Agents Chemother. 2009; 53: 1983-1986
        • Jones R.N.
        • Stilwell M.G.
        • Rhomberg P.R.
        • Sader H.S.
        Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997-2007).
        Diagn Microbiol Infect Dis. 2009; 65: 331-334
        • Venier A.G.
        • Lavigne T.
        • Jarno P.
        • L’heriteau F.
        • Coignard B.
        • Savey A.
        • et al.
        Nosocomial urinary tract infection in the intensive care unit: when should Pseudomonas aeruginosa be suspected? Experience of the French national surveillance of nosocomial infections in the intensive care unit, Rea-Raisin.
        Clin Microbiol Infect. 2012; 18: E13-E15
        • Navon-Venezia S.
        • Ronen Ben-Ami R.
        • Carmeli Y.
        Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting.
        Curr Opin Infect Dis. 2005; 18: 306-313
        • Falagas M.E.
        • Kopterides P.
        Risk factors for the isolation of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systemic review of the literature.
        J Hosp Infect. 2006; 64: 7-15
        • Nicolle L.
        The prevention of hospital-acquired urinary tract infection.
        Clin Infect Dis. 2008; 46: 251-253
        • Harris A.D.
        • Smith D.
        • Johnson J.A.
        • Bradham D.D.
        • Roghmann M.C.
        Risk factors for imipenem-resistant Pseudomonas aeruginosa in hospitalized patients.
        Clin Infect Dis. 2002; 34: 340-345