Advertisement

The impact of multidrug resistance on outcomes in ventilator-associated pneumonia

Published:March 17, 2014DOI:https://doi.org/10.1016/j.ajic.2013.12.009
      Multidrug-resistant (MDR) organisms in ventilator-associated pneumonia were found in 49 of 107 patients and were associated with home antibiotics, pre-ventilator-associated pneumonia hospital stay, and health care exposure. Overall, MDR organisms were associated with increased mortality (P = .006). On multivariate analysis, MDR status was modulated by organism class. In nonfermenting gram-negative rods, no association between MDR and mortality was found, but, in all other organisms, MDR was associated with increased mortality risk (hazard ratio, 6.15; 95% confidence interval: 1.80-21.05, P = .004).

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Infection Control
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chastre J.
        • Fagon J.Y.
        Ventilator-associated pneumonia.
        Am J Respir Crit Care Med. 2002; 165: 867-903
        • Hunter J.D.
        Ventilator associated pneumonia.
        BMJ. 2012; 344: e3325
        • Tseng C.C.
        • Liu S.F.
        • Wang C.C.
        • Tu M.L.
        • Chung Y.H.
        • Lin M.C.
        • et al.
        Impact of clinical severity index, infective pathogens, and initial empiric antibiotic use on hospital mortality in patients with ventilator-associated pneumonia.
        American Journal of Infection Control. 2012; 40: 648-652
        • Trouillet J.L.
        • Chastre J.
        • Vuagnat A.
        • Joly-Guillou M.L.
        • Combaux D.
        • Dombret M.C.
        • et al.
        Ventilator-associated pneumonia caused by potentially drug-resistant bacteria.
        American journal of respiratory and critical care medicine. 1998; 157: 531-539
        • Parker C.M.
        • Kutsogiannis J.
        • Muscedere J.
        • Cook D.
        • Dodek P.
        • Day A.G.
        • et al.
        Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes.
        Journal of critical care. 2008; 23: 18-26
        • Sievert D.M.
        • Ricks P.
        • Edwards J.R.
        • Schneider A.
        • Patel J.
        • Srinivasan A.
        • et al.
        Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010.
        Infect Control Hosp Epidemiol. 2013; 34: 1-14
        • Blot S.
        • Depuydt P.
        • Vandewoude K.
        • De Bacquer D.
        Measuring the impact of multidrug resistance in nosocomial infection.
        Curr Opin Infect Dis. 2007; 20: 391-396
        • Combes A.
        • Luyt C.E.
        • Fagon J.Y.
        • Wolff M.
        • Trouillet J.L.
        • Chastre J.
        Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia.
        Crit Care Med. 2007; 35: 146-154
        • Pugin J.
        • Auckenthaler R.
        • Mili N.
        • Janssens J.P.
        • Lew P.D.
        • Suter P.M.
        Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid.
        Am Rev Respir Dis. 1991; 143: 1121-1129
      1. Centers for Disease Control and Prevention. Ventilator-associated pneumonia. Available from: http://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf. 2013. Accessed February 1, 2013.

        • Magiorakos A.P.
        • Srinivasan A.
        • Carey R.B.
        • Carmeli Y.
        • Falagas M.E.
        • Giske C.G.
        • et al.
        Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.
        Clin Microbiol Infect. 2012; 18: 268-281
        • Shorr A.F.
        Review of studies of the impact on gram-negative bacterial resistance on outcomes in the intensive care unit.
        Crit Care Med. 2009; 37: 1463-1469
        • Planquette B.
        • Timsit J.F.
        • Misset B.
        • Schwebel C.
        • Azoulay E.
        • Adrie C.
        • et al.
        Pseudomonas aeruginosa ventilator-associated pneumonia: predictive factors of treatment failure.
        Am J Respir Crit Care Med. 2013; 188: 69-76
        • Linares J.F.
        • López J.A.
        • Camafeita E.
        • Albar J.P.
        • Rojo F.
        • Martínez J.L.
        Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa.
        J Bacteriol. 2005; 187: 1384-1391
        • Kaminski C.
        • Timsit J.-F.
        • Dubois Y.
        • Zahar J.-R.
        • Garrouste-Orgeas M.
        • Vesin A.
        • et al.
        Impact of ureido/carboxypenicillin resistance on the prognosis of ventilator-associated pneumonia due to Pseudomonas aeruginosa.
        Crit Care. 2011; 15: R112
        • Pena C.
        • Gomez-Zorrilla S.
        • Oriol I.
        • Tubau F.
        • Dominguez M.A.
        • Pujol M.
        • et al.
        Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality.
        Eur J Clin Microbiol Infect Dis. 2013; 32: 413-420
        • Zilberberg M.D.
        • Shorr A.F.
        Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009.
        J Hosp Med. 2013; 8: 559-563
        • Gupta N.
        • Limbago B.M.
        • Patel J.B.
        • Kallen A.J.
        Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention.
        Clin Infect Dis. 2011; 53: 60-67
        • Patel G.
        • Huprikar S.
        • Factor S.H.
        • Jenkins S.G.
        • Calfee D.P.
        Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies.
        Infect Control Hosp Epidemiol. 2008; 29: 1099-1106
        • van Duin D.
        • Kaye K.S.
        • Neuner E.A.
        • Bonomo R.A.
        Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes.
        Diagn Microbiol Infect Dis. 2013; 75: 115-120
        • Kontopidou F.
        • Giamarellou H.
        • Katerelos P.
        • Maragos A.
        • Kioumis I.
        • Trikka-Graphakos E.
        • et al.
        Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: a multi-centre study on clinical outcome and therapeutic options.
        Clin Microbiol Infect. 2014; 20: O117-O123
        • Combes A.
        • Luyt C.E.
        • Trouillet J.L.
        • Chastre J.
        Controversies in ventilator-associated pneumonia.
        Semin Respir Crit Care Med. 2010; 31: 47-54