immune systems, and therefore are more susceptible to sickness more often. Therefore, the older population needs to be added and thus segmented into several different age groups that will help give clear indications as far as age and its influence on contracting the flu virus, and whether or not the vaccine is effective. For example, splitting people up into age groups such as ages 0–10 years, 10–20 years, 20–30 years, and 65 years and older, along with factoring in their occupations and daily activities, and then administering the same tests used in the experiment. This will be far more efficient in figuring out how the vaccine helps or does not help people of all ages rather than just a set age group such as children.

As someone who has doubts about the flu vaccine, I believe that more evidence must be found across particular age groups to prove the quality and the effectiveness of the vaccine on individuals at all stages of life. Field mentions that his study was limited to a private pediatric practice and the information was gathered over a 1-year period. To expand upon this, a larger, more diverse and broad sample must be used to show the efficacy and validity of the flu vaccine. This study was a huge step in the right direction in bringing about awareness of the influenza vaccine and its capabilities. With the changes mentioned above, the vaccine’s influence can be far more prevalent and potentially prevent a contagious and frequently diagnosed respiratory disease in America.

To the Editor:

I appreciate the interest in my influenza vaccine study.1 In pediatric patients, vaccine efficacy varies from year to year, and can be influenced by the type of vaccine used. This is probably also true for older individuals. My study design may not be practical for older populations other than possibly in family practice settings, but my findings could have implications for many prospective vaccine efficacy studies. The same individuals who routinely shun influenza vaccines because of personal and family experiences of not getting sick with influenza in the absence of vaccination are also likely not to enroll in a prospective vaccine trial. Those who have experienced influenza morbidity during years when they were not immunized are more likely to enroll themselves or their children in such a trial. Thus, efficacy results in many open enrollment trials may not be applicable to the general population, but rather to the relatively high-risk population that signs up for the study. More needs to be determined about individual susceptibility to viral diseases like influenza to truly understand the efficacy of vaccines intended to prevent them.

Reference


Conflicts of interest: None to report.

Scott S. Field

Department of Pediatrics

University of Alabama at Birmingham School of Medicine

Huntsville Campus, Huntsville, AL

Huntsville Hospital, Crestwood Medical Center, Huntsville, AL

* Address correspondence to Scott S. Field, MD, 1106 Gleneagles Dr, Huntsville, AL 35801-6404.

E-mail address: scottfieldmd@gmail.com (S.S. Field).

http://dx.doi.org/10.1016/j.ajic.2017.01.015

Klebsiella pneumoniae carbapenemase-producing Serratia marcescens outbreak in a university hospital

To the Editor:

Serratia marcescens is an important pathogen involved in hospital-acquired infections. Outbreaks have been reported and are difficult to eradicate. In neonates, the gastrointestinal tract represents an important reservoir for cross-contamination; however, in adult hospitalized patients, the respiratory tract is more important.1 To date, few reports of Klebsiella pneumoniae carbapenemase (KPC)-producing S marcescens have been described in Brazil. Recently, Da Silva et al2 described an outbreak of carbapenem-resistant S marcescens with a focus on coproduction of KPC-2 and IMP-10 in a Brazilian university hospital. The outbreak occurred in an intensive care unit and all isolates were classified in the same clonal profile by pulsed-field gel electrophoresis (PFGE). We faced a simultaneous S marcescens outbreak in another Brazilian hospital, 1 of them by a KPC-producing clone.

The outbreak occurred at Hospital Universitario Evangelico de Curitiba, a tertiary-care trauma reference hospital in southern Brazil with a total of 660 beds. All 17 isolates of S marcescens from 12 patients admitted to Hospital Universitario Evangelico de Curitiba September 11-October 22, 2015, were evaluated. Epidemiologic and microbiologic data of bacterial isolates are presented in Table 1. Bacterial isolates were identified and tested for antimicrobial susceptibility using the Vitek2 Compact System (bioMérieux, Durham, NC). Isolates were submitted to polymerase chain reaction for blaKPC using EasyQ KPC (bioMérieux, Marcy-l’Étoile, France).